О природе гидридов благородных газов

В.И. Фельдман
(«ХиЖ», 2003, №7-8)

Отличительная особенность новых соединений инертных газов, которая и позволила их открыть, — очень интенсивные полосы поглощения, которые отвечают валентным колебаниям X—H. Эти полосы не только служат «визитной карточкой» новых молекул, но и дают важную информацию о природе связи: чем выше частота максимума, тем прочнее связь. Диапазон изменений простирается от 1851 см–1 в весьма прочной молекуле HXeNC до 1119 см–1 в наиболее слабой — HXeSH. Интенсивности этих полос огромны — чуть ли не в десять раз больше величин, которые характерны для большинства спектров известных веществ. То есть атом водорода при колебаниях X–H смещается достаточно далеко.

Раз интенсивность полос велика, то и следить за гидридами инертных газов с помощью ИК-спектроскопии легко, даже если их концентрации очень малы: чувствительность этого метода оказывается рекордно высокой. Поскольку положение полос сильно зависит от окружения молекул, они оказываются высокочувствительными ИК-спектроскопическими зондами для исследований структуры и динамики твердых матриц при низких температурах.

Другое свойство обосновано скорее теоретически, чем экспериментально. Речь идет о том, что все молекулы типа HXY — метастабильные, богатые энергией системы. Например, при превращении одной молекулы HXeCCH в ксенон и ацетилен должно выделиться 4,5 эВ (примерно 104 ккал/моль). Еще больше энергии запасено в дигидриде ксенона. Другими словами, твердые матрицы с гидридами инертных газов можно рассматривать как аккумуляторы энергии, запасенной в виде относительно слабо связанных атомов и радикалов. Высвободить эту энергию при очень низких температурах в принципе можно путем инициирования цепного разложения с помощью ИК-лазера. И при этом никакой грязи не возникнет — только водород и ксенон!

Что касается химических свойств гидридов инертных газов, то они пока практически не изучены. Известно, что некоторые из этих соединений наблюдаются до тех пор, пока матрица устойчива (в случае твердого ксенона — примерно до 75–80 К), а потом исчезают вместе с образцом, который «слетает» с подложки. В этих условиях сказать что-то определенное о механизме их гибели трудно. Однако, например, HXeOH гибнет уже при 55К, скорее всего превращаясь в воду и ксенон. Следовательно, «химическая индивидуальность» у этих молекул безусловно есть — она проявляется хотя бы в разной устойчивости

Конечно, для того, чтобы всерьез говорить о перспективах использования гидридов инертных газов, нужно научиться получать их в чистом виде, желательно — при обычных температурах. Пока этого сделать не удалось, однако дело не безнадежное. Согласно расчетам, энергия диссоциации HXY на нейтральные фрагменты (H + X + Y) находится между 0,4 и 1,5 эВ, то есть, в более привычных для химиков единицах, от 9 до 35 ккал/моль (верхняя граница соответствует, например, энергии диссоциации молекул F2 или I2). Это означает: наиболее прочные молекулы такого сорта в принципе вполне могут быть устойчивы при комнатной и даже более высоких температурах. Очень важно, что молекулы гидридов ксенона уже получены в матрицах других инертных газов (криптона и неона). Значит, мы имеем дело с «нормальными» молекулами, которые, возможно, удастся перенести в другую среду. Перспективы прямого газофазного или жидкофазного синтеза за счет тримолекулярных реакций выглядят весьма туманными. А вот возможность получения гидридов инертных газов в полостях твердых матриц различной микроструктуры, например в каналах цеолитов или микропорах полимеров, представляется гораздо более реалистичной. Можно даже представить, что направленный синтез в таких микрореакторах позволит получить ксенонсодержащие макромолекулы, которые будут устойчивыми при комнатной температуре. Впрочем, об их свойствах пока можно только фантазировать.

Разные разности
Белая подруга
В многочисленной березовой семье не без урода. Есть в ней необычные деревья — белоствольные, но низкорослые, извилистые и с большими наростами. Однако это именно тот случай, когда вся красота спрятана внутри, потому что это — карельская бер...
Почему заржавел Марс?
Что придает Марсу ржаво-красный цвет? За это должна отвечать какая-то форма оксида железа. Но вопрос — какая именно? Действительно, железо в изобилии присутствует в марсианских породах, и оно могло окислиться, заржаветь. Однако оксидов железа мн...
Противоестественная эволюция
Если сравнить фотографии носорогов, сделанные за последние полтора столетия, то бросается в глаза, что рога носорогов стали заметно меньше. Почему такой поворот эволюции? А потому, что в нее вмешался человек.
Люблю грозу в начале марта
Помните у Тютчева: «Люблю грозу в начале мая,/ Когда весенний, первый гром…»? Фёдор Иванович написал эти строки 197 лет назад. Но за два прошедших столетия многое изменилось. Сегодня строки Тютчева нуждаются в редактуре по существу и должны звуч...