Синергия простых мозгов

Александр Гурьянов

Биологи давно стали подозревать, что от поведения отдельного представителя  коллективных насекомых, к примеру, термитов или пчел, мало зависят действия их групп. Так муравьи по отдельности мало на что способны, но их организованная толпа может решать труднейшие, с людской точки зрения, задачи — обеспечивать муравейник пищей, защищать его, строить сложные сооружения.

Группа ученых во главе с профессором школы инженерных и прикладных наук Гарвардского университета Лакшминараньяном Махадеваном (Lakshminarayan Mahadevan) не только построила математическую модель коллективного поведения черных муравьев-плотников, но и проверила ее экспериментально с помощью роботов. Результаты этой работы опубликованы в 11 номере журнала ELife за прошлый год.

Первым делом исследователи изучили, как дюжина муравьев совместными действиями продырявливают изнутри емкость из агара, образующего плотный студень растительного заменителя желатина. Сначала они движутся в ней беспорядочно, исследуя ее границы усиками, а иногда их касанием общаются с собратьями. Спонтанно они собираются в группы. Если несколько муравьев начали прогрызать стенки «тюрьмы», то к группе присоединяются и другие. Таких групп несколько, муравьи между ними мигрируют. И постепенно образуется самая успешная и многочисленная, которая и проделывает проход.

Исследователи создали математическую модель успешности группы муравьев в заданных условиях. Изучая муравьев, ученые выявили два основных параметра задачи. Это сила взаимодействия особей и скорость прогрызания препятствии. Говоря кратко, успех приходил к тем, кто эффективно кооперируется и быстро роет.

Для проверки модели инженеры построили несколько муравьев-роботов, силу взаимодействия которых можно было регулировать. Они могли двигаться по стеклянной арене, окруженной тремя рядами магнитных цилиндров. Роботы сами имели магнитики, датчики освещенности и инфракрасные датчики контакта с предметами. Управляемый проектор света, освещающий снизу прозрачную арену, создавал световые следы роботов. Эти так называемые фотормоны имитировали феромоны муравьев.

Софт роботов содержал простые правила: двигайся по градиенту светового поля, избегай столкновений с себе подобными, хватай препятствия в областях сильной засветки, переноси их в области слабой. Эти правила и позволяли роботам быстро устранять препятствия и выбираться из ограниченного ими пространства. Меняя силу связи роботов, ученые генерировали предсказанные теорией режимы поведения роботов, в частности, меняли скорость преодоления препятствий.

Математическая модель оказалась очень гибкой, а ее простые алгоритмы, заложенные в роботов, очень устойчивы к ошибкам и сбоям. Она надежнее других программ, предназначенных для решения коллективных задач. Ее можно приспособить для решения многих других проблем, например строительства, поиска, спасения, защиты. Модель легко масштабировать на десятки и сотни роботов, использующих разные способы коммуникации.


eLife, 2022; 11

Разные разности
Исполины против микропластика
Ученых интересует, как ведет себя микропластик в разных средах и как от него защититься или избавиться. И тут пришла подмога, откуда не ждали. Руку помощи с узловатыми крючковатыми пальцами протянули нам дубы.
Светящаяся петуния
Что вы скажете по поводу петунии, чьи цветки светятся в темноте подобно светлячкам? Скажете — небывальщина? Нет. Такие петунии уже появились на рынке. И появились они благодаря российской биотехнологической компании «Планта».
«Царица полей» против мышьяка
У кукурузы как кормовой культуры есть масса достоинств. Недавно ученые обнаружили у нее еще одно необычное свойство. И связано оно с мышьяком.
Живая музыка против консервированной
Музыка — это великолепный инструмент, который при умелом использовании позволяет нам перенастраивать свой мозг, регулировать состояние нервной системы, быстро переключиться и давать мозгу возможность отдохнуть. Но здесь возникает вопрос. Если сл...