Почему Альберт Эйнштейн не изобрел лазер

Ю.Р. Носов

Говорят, что история не терпит сослагательного наклонения — что было, то было, — и все же трудно удержаться от соблазна порассуждать о том, что могло быть и иначе. Особенно когда речь идет о начале ХХ века — времени рождения новой физики, радио, электроники, авиации, времени, в котором бок о бок творили мудрые титаны уходящего прошлого и молодые напористые ниспровергатели основ, которые приближали будущее. А первым среди тех и других был Альберт Эйнштейн.

Этот чудо-человек вошел в представление околонаучного обывателя как типичный физик-теоретик, постоянно погруженный в раздумья о сложнейших уравнениях, гений не от мира сего. Действительно, он предпочитал уединенное и обособленное существование вне научных школ и течений, у него фактически не было ни учителей, ни учеников, его основные работы появлялись без соавторов и почти без ссылок на предшественников. На имидж творца-олимпийца и философа-отшельника работали и его мечты о должности смотрителя маяка, и обращения — запросто — к предшественнику-классику («Простите меня, Ньютон, но …»), и заношенный свитер, и скрипка в часы досуга.

Все это так, однако… В двадцать три года, имея жену и дочь (потом у него будут еще и два сына), он после нескольких лет безработицы получил должность эксперта швейцарского патентного ведомства. Об этом эпизоде его жизни наслышаны все, однако на самом деле это был не эпизод — долгих семь лет самой творческой поры своей молодости (до 1909 года) он отдал рассмотрению изобретательских заявок на холодильники и электроизмерительные приборы, рутинной переписке со склочными авторами, а на судебные разбирательства его как эксперта приглашали вплоть до 1915 года, хотя он уже был тогда профессором Цюрихского университета. Работая патентоведом, он и сам сделал несколько изобретений (в основном это были измерительные приборы), а в занятиях физикой проявлял очевидную склонность к эксперименту. В 1915 году проделал изящный эксперимент по обнаружению вращения намагничиваемого железного стержня — «эффект Эйнштейна–де Гааза» вошел в учебники физики. Те, кто испытал нечто подобное на себе, знают, какой ни с чем не сравнимый восторг охватывает человека, который успешно завершил изощренный эксперимент или изготовил действующий образец изобретенного им устройства. Это вам не новая, пусть даже очень красивая теория — иногда годами и десятилетиями приходится дожидаться, что кто-нибудь соблаговолит ее подтвердить опытом, а пока остается довольствоваться дежурными похвалами равнодушных коллег и язвительными уколами критиков. Несомненно, все это пережил и Эйнштейн и, судя по его письмам, сладостный вкус экспериментаторского первооткрывательства запомнил навсегда. Он ведь и образование получил — инженерно-техническое.

И вовсе он не был отшельником. Когда в 1925 году в Иерусалиме на горе Скопус открылся Еврейский университет, то одним из его шести профессоров (на первых девять студентов) стал Эйнштейн — отшельник вряд ли принял бы участие в этой чисто политической акции. А знаменитое письмо об атомной бомбе? Много лет спустя, уже после образования Государства Израиль, когда в ноябре 1952 года скончался его первый президент Хаим Вейцман, через девять дней в качестве вероятного преемника пресса назвала семидесятитрехлетнего Эйнштейна. Вейцман был профессором химии, так почему бы не избрать на его место профессора физики да еще и Нобелевского лауреата? Однако официального сигнала от властей не последовало, и он отказался от баллотирования.

Не вяжутся с образом затворника романтические истории великого физика, в которых фигурируют и весьма известные женские имена; его афоризмы и парадоксы свидетельствуют, по мнению психологов, о стремлении их автора «быть на слуху». Точнее, о подсознательном стремлении — о скромности, отсутствии тщеславия, несуетности Эйнштейна написано много и вполне оправданно. Фактически всю жизнь Эйнштейн был эмигрантом, лишь в 61 год он получил американское гражданство и навсегда осел в спокойном университетском Принстоне. А кому, как не эмигрантам, лучше всех известны реалии жизни, ее изнанка — неустроенность, неуверенность в завтрашнем дне, чиновный произвол и недоброжелательство обывателя.

Историки науки называют началом новой эры в физике (а вслед за ней — в естествознании вообще) 14 декабря 1900 года, когда в Берлине на заедании Немецкого научного общества Планк доложил о получении формулы теплового излучения, опирающейся на квантовую гипотезу. Постфактум такая оценка несомненно верна, но в то время научная общественность не очень-то заметила выступление Планка — мало ли какие математические ухищрения используют теоретики при решении сложных задач. Кроме того, усилиями таких титанов, как Кирхгоф, Больцман и Рэлей, теория теплового излучения уже была создана, хотя и не безгрешная (но ведь каждая теория ограниченна), и в 1911 году одному из продолжателей дела классиков Вину была присуждена Нобелевская премия «за открытия в области законов, управляющих тепловым излучением». В этом решении отразились предпочтения тогдашней научной общественности; похоже, что сам Планк долгое время не в полной мере осознавал, что именно совершил. Потребовалось не только открытие Эйнштейна (об этом ниже), но его решительность и осознанная убежденность в революционности и универсальности квантовой гипотезы, чтобы и Планк в это поверил. И в своей нобелевской лекции (а очередь дошла лишь в 1918 году) он уже уверенно говорил о фундаментальной роли кванта действия в физике и о том, что «появление его возвещало нечто совершенно новое, что требовало преобразования самых основ нашего физического мышления». Правда, потом он снова начинает сомневаться: ведь пришлось замахнуться на электродинамику Максвелла! Планку принадлежит проницательное замечание: «Великая научная идея редко внедряется путем постепенного убеждения и обращения своих противников, редко бывает, что Савл становится Павлом. В действительности происходит так, что оппоненты постепенно вымирают, а растущее поколение с самого начала осваивается с новой идеей». Своей жизнью он дважды подтвердил справедливость этих слов: во-первых, тем, что 18 лет дожидался признания научного сообщества — Нобелевской премии, и во-вторых, тем, что, будучи творцом квантовой теории, он до конца жизни (1947) так и не принял квантовую механику.

Не таков был Эйнштейн. Частенько говорят о том, что он развил квантовую идею Планка, распространив ее не только на испускание света, но и на его поглощение. Это так, но все же это полуправда, а она, как известно, нередко становится неправдой. Эйнштейн, по мнению знавших его близко, обладал удивительной способностью визуализировать основные этапы и результаты своих расчетов. Вероятно, в какой-то момент он внутренним зрением «увидел» квант света как некую частицу, пусть и не совсем привычную, вроде атомов, молекул или недавно открытых электронов, но все же вполне реальную частицу. И величина h, которая у Планка была лишь абстрактно-постулированной минимально возможной порцией энергии, для Эйнштейна однозначно соотнеслась с энергией открытой им (пока теоретически) новой частицы.

Правда, для окончательного утверждения новой частицы в сознании научного сообщества потребовалось четверть века: решающим стал эксперимент Комптона (1922) по рассеянию квантов излучения на электронах. Потом еще немало помучились: признавать или не признавать частицей нечто, имеющее энергию и импульс, но не обладающее массой покоя, легко возникающее и исчезающее в квантовом микромире. Лишь в 1929 году появилось слово «фотон» — легализация световых квантов завершилась. После того как новые частицы — кванты света стали для Эйнштейна реальностью, создание теории фотоэффекта не вызвало у него затруднений и соответствующая публикация появилась в «Annelen der Physik» 7 июня 1905 года.

В случае с фотоэффектом Эйнштейн не занимался исключительно теоретизированием, но неизменно держал в уме известные экспериментальные результаты. Среди них наиболее существенным был парадокс, обнаруженный Ленардом: скорость вылета электронов из металла при освещении не зависит от интенсивности падающего света, но однозначно определяется его цветом, возрастая в направлении от красного к синему. Это совершенно не вязалось с классическим представлением о свете как о волне. Квантовая теория Эйнштейна блистательно объяснила парадокс, это стало ее триумфом. Именно за открытие закона фотоэлектрического эффекта ему в 1921 году была присуждена Нобелевская премия. А вовсе не за теорию относительности, которая была заявлена в том же 1905 году и с которой в первую очередь связано в представлении широкой публики его имя (о ней в решении Нобелевского комитета упомянуто намеком: «За его заслуги перед теоретической физикой»).

Маленькое отступление. Ленард — колоритнейший персонаж той поры: всю жизнь он считал себя недооцененным и испытывал нескрываемую неприязнь ко многим физикам. К Рентгену, открывшему знаменитые лучи на разрядной трубке его, Ленарда, конструкции; к Томсону за открытие им в 1897 году электрона, которое сам Ленард планировал еще в 1896 году, да помешала, по его утверждению, «загруженность лекциями»; к Эйнштейну за успех его теории фотоэффекта; к Ли де Форесту за изобретение вакуумного триода, который Ленард сделал намного раньше, только не с термо-, а с фотокатодом, и которому не нашел никакого применения. Он никогда не говорил «рентгеновские», а только «Х-лучи»; законы фотоэффекта неизменно называл своим именем. Даже Нобелевская премия 1905 года (раньше томсоновской и эйнштейновской) не утихомирила его — слишком скромной казалась ее формулировка «за исследование катодных лучей». Не этот ли комплекс обделенности позднее привел Ленарда в лагерь нацистов и сделал «лидером арийских физиков»? Занятие высокой наукой — не гарантия высокой нравственности.

Итак, в 1905 году Эйнштейн оказался первым человеком в мире, который знал о существовании двух частиц: электрона (открытого еще в 1897 году Томсоном) и фотона, образующих физическую основу всей современной информатики. Более того, он уже знал о том, что при поглощении фотона из металла вылетает электрон, то есть происходит кажущееся превращение фотона в электрон (электрон при этом не возникает, но переходит из связанного состояния в свободное). Что-то похожее на предощущение обратного превращения электрона в фотон появилось у него тогда же или несколько позже. Об этом свидетельствует его статья о квантовой теории излучения и поглощения, опубликованная в 1916 году. Это совпало со временем его напряженной работы над теорией относительности, ее пропагандированием и отстаиванием — значит, электрон-фотонные «превращения» его интересовали не мимолетно, а всерьез.

Теперь ему все стало ясно: фотоны рождаются при скачкообразных квантовых переходах электронов из одного состояния в другое, а иногда из свободного состояния в связанное, то есть происходит кажущееся превращение электрона в фотон. При этом испускание фотонов может быть как самопроизвольным, так и вынужденным, стимулированным. В первом случае возбужденная система возвращается к исходному состоянию — термодинамически равновесному (в ситуации крушения классической физики под напором квантовой добрая старая термодинамика оставалась единственным «островком стабильности», в который верили все). Во втором случае необходимо было особым образом возбудить вещество перед испусканием им фотонов, на языке той теории — охладить его ниже абсолютного нуля (создать инверсную населенность, говорим мы теперь), что невозможно, и потому это не было воспринято современниками. Многими, но не Эйнштейном — срабатывала первая часть его знаменитого афоризма «никто не верит в теорию, кроме создавшего ее теоретика; все доверяют эксперименту, кроме самого экспериментатора».

Стимулированное излучение предсказывало механизм лавинного нарастания количества испускаемых фотонов, то есть возможность получения суперярких световых вспышек. Знал ли Эйнштейн о когерентности возможного стимулированного излучения? По-видимому, да: идентичность всех испускаемых фотонов подразумевалась сама собой, но в практической плоскости этот вопрос не ставили ни окружающие, ни он сам и ответ на него не был сколько-нибудь важным. Предвидел ли Эйнштейн лазер? Нет — ибо иначе он развил эту тематику. Сегодня это кажется странным, и недаром создатель первого лазера нобелевский лауреат Таунс находил более всего удивительным тот факт, что лазер не был создан лет на 30 раньше.

Вернемся в 1905 год, когда Эйнштейн открыл фотон и увидел (отчасти предугадал) возможность взаимных «превращений» фотонов и электронов. Почему же он не сделал в этом направлении ни одного шага? Посмотрим, какая «электроника» окружала его, уже осознавшего свое нетривиальное предназначение физика.

Еще в 1888 году Риги в Италии и Столетов в России изготовили вакуумные фотоэлементы, но их чувствительность была столь низка, что реального применения, кроме как в научных экспериментах, они не получили. Изобретатели радио, Попов и Маркони, использовали для улавливания передаваемых сигналов когеррер — стеклянную трубку с металлическими опилками, которые под воздействием электромагнитных волн выстраивались в токопроводящие цепочки. Какие проблемы в таком «чуде электроники» мог найти для себя физик? В родной Германии — ведущей электротехнической державе мира — Браун модифицировал катодную трубку Ленарда, введя в нее пластины, отклоняющие электронный луч, и получил таким образом устройство для визуализации процессов, протекающих в электрических цепях (трубка Брауна, 1897, прообраз осциллографа). Он же обнаружил выпрямляющие свойства диода, который состоял из заостренной металлической иглы, прижатой к кусочку карборунда, — эти свойства могли быть использованы для детектирования радиоволн. Перспективность обоих устройств была несомненна, но потребовались годы и годы, чтобы они технически реализовались. На базе трубки Брауна был создан кинескоп — основа современного телевидения (Зворыкин, 1929), а карборундовые детекторы получили применение в радиоприемниках 20-х годов. Все это было интересно, но не для физика, а для изобретательного электротехника.

В 1901 году мир облетела сенсация: Маркони передал радиосообщение через Атлантику. Как это выглядело в реальности? Искровой генератор Герца соединялся с длинным металлическим проводом, который с помощью обычного детского воздушного змея поднимался вертикально вверх, — этим достигалось сильное увеличение дальности распространения радиоволн, и это стало главной находкой Маркони. Три точки (буква S в азбуке Морзе), переданные из английского Корнуэлла, были «услышаны» на Ньюфаундленде — так началась эра всемирной радиосвязи. Через месяц, 18 января 1902 года, в нью-йоркской «Уолдорф-Астории» был организован обед на 300 персон — для авторитетов мира телеграфа и телефонии, на котором обозначились нобелевские претензии Г. Маркони. Этой награды он, совместно с К.Ф. Брауном, был удостоен в 1909 году.

В 1906 году в Америке, изобретательно-предприимчивой, но провинциальной по части новейших физических идей, Ли де Форест создал вакуумный триод, которому суждено было совершить переворот в электронике. Однако переворот произошел лишь лет через 10–15, а в ту пору триод из-за низкого вакуума был скорее ионным прибором, нежели электронным, кроме того, Ли де Форест всячески оберегал свое изобретение от копирования (поставлял лампы в опечатанных ящичках, из которых наружу выходили лишь три провода), и вряд ли Эйнштейн был знаком с этим первенцем электроники.

Теперь, в XXI веке, мы знаем, что электроника — это физические основы плюс высокая технология, и понимаем, что «электроника Эйнштейна» — лазеры, фотопреобразователи и другие оптоэлектронные приборы — могла стать реальностью лишь в сочетании с намного более совершенной технологией второй половины ХХ века. Так долго он ждать не мог, не мог и погрузиться в ту примитивную (с точки зрения физика-теоретика) кустарщину, которая его окружала. А изощренный мозг ежедневно требовал пищи, и «реальный Эйнштейн» вынужден был уступить дорогу другому, тому, который погрузился в раздумья об отвлеченностях типа «пространство — время» (традиционный выбор тех, кто почему-либо лишен возможности практической деятельности). Сразу же преуспев на этом поприще, в дальнейшем он уже не смог изменить свою судьбу.

В наш век рейтингов и опросов было бы занятно обратиться к человечеству с вопросом: что важнее — обрести наконец-то единую картину мира от атомных ядер до всей Вселенной (над этим Эйнштейн и трудился большую часть жизни, но так и не преуспел) или лет на тридцать раньше получить в пользование CD и DVD, интернет, мобильные телефоны, видеокамеры? Разумеется, истина не определяется большинством голосов (а мнение большинства очевидно), но все же, все же…

Доктор физико-математических наук
Ю.Р. Носов

Разные разности
Память обезьян похожа на человеческую
Наука постоянно добывает все новые и новые факты, подтверждающие сходство людей и обезьян и намекающие на то, что, как минимум, общий предок у человека и обезьяны был. И речь идет не о внешнем сходстве, а о более тонких вещах — о работе мозга.
Камни боли
Недавно в МГУ разработали оптическую методику, позволяющую определить состав камней в живой почке пациента. Это важно для литотрипсии — процедуры, при которой камни дробятся с помощью лазерного инфракрасного излучения непосредственно в почках.
Женщина изобретающая
Пишут, что за последние 200 лет только 1,5% изобретений сделали женщины. Не удивительно. До конца XIX века во многих странах женщины вообще не имели права подавать заявки на патенты, поэтому частенько оформляли их на мужей. Сегодня сит...
Мужчина читающий
Откуда в голове изобретателя, ученого вдруг возникает идея, порой безумная — какое-нибудь невероятное устройство или процесс, которым нет аналогов в природе? Именно книги формируют воображение юных читателей, подбрасывают идеи, из которых выраст...