Огоньки под ногами

Клещенко Е.
(«ХиЖ», 2014, №9)

Напомним основные термины. Люминесценция — все виды излучения, вызванные возбуждением молекул. В частности, флуоресценция — свечение, возникающее после того, как вещество поглощает другое излучение. Всем известный пример флуоресценции в биосистемах — зеленый флуоресцентный белок GFP, найденный у медузы Aequorea victoria и ставший родоначальником семейства флуоресцентных белков, которые широко применяются в фундаментальной и прикладной науке. За открытие и разработку методов использования этих белков получили Нобелевскую премию по химии 2008 года Осаму Шимомура, Мартин Челфи и Роджер Тсиен.

Хемилюминесценция возникает в химических реакциях; применительно к биообъектам именно ее часто называют биолюминесценцией, опуская «хеми». Живые организмы никогда не оставляют химические реакции на произвол случая — практически каждая катализируется специально для этого приспособленным ферментом. Биолюминесценция не исключение: фермент люцифераза окисляет низкомолекулярное вещество люциферин, тот превращается в оксилюциферин, в итоге выделяется энергия — квант света. Биолюминесценция много раз возникала на разных ветвях эволюционного древа, поэтому люциферины — это группа разнообразных веществ с общей функцией; у разных животных — различные люциферины и, конечно, разные люциферазы. Классический пример люциферин-люциферазной реакции — огонек светлячка. У некоторых организмов осуществляется другой вариант: люциферин присоединяется к так называемому фотобелку и уже на нем окисляется при добавлении ионов металла (чаще всего кальция). Более сложный случай — перенос энергии с белка на белок с изменением спектра излучения. Так, свечение зеленого флуоресцентного белка медузы Aequorea victoria возбуждается синим светом другого белка — экворина. Он стал первым изучаемым фотобелком; его открытие в 1961 году было заслугой Осаму Шимомуры. Люциферин экворина называется «целентеразин», причем экворея не синтезирует его сама, а получает с пищей, поедая мелких членистоногих. Еще известна биолюминесценция грибов — светятся даже всем известные опята и валуи! — но она протекает по иному механизму и пока мало изучена.

s20140902 ogonki1.jpg

Два года назад мы писали о мегагранте, который получили красноярский Институт фундаментальной биологии и биотехнологии (ИФБиБТ) Сибирского федерального университета и Осаму Шимомура (см. «Химию и жизнь», 2012, № 7). Среди основных задач проекта были изучение молекулярно-клеточной организации биолюминесцентных систем высших грибов, кольчатых почвенных червей и других групп организмов, а также создание аналитических систем, использующих явление биолюминесценции, для медицины и мониторинга окружающей среды. В проекте участвовали сотрудники красноярских Института биофизики СО РАН и Института физики им. Л.В.Киренского СО РАН, московского Института биоорганической химии им. М.М.Шемякина и Ю.А.Овчинникова (подробности см. на http://biolum.sfu-kras.ru).

Именно возможность изучать фундаментальные проблемы биолюминесценции заинтересовала Осаму Шимомура (нобелевского лауреата, уже весьма немолодого, журналисты постоянно спрашивали, как он решился на совместный проект, который требовал его длительного присутствия в России). «В 60-е годы эта область науки развивалась очень интенсивно, в 70-е — умеренно, а к настоящему времени практически сошла к нулю, — говорил он на пресс-конференции во время первого визита в Красноярск. — Очень тяжело получать результаты, это упорный труд, который занимает много времени. В Японии и Соединенных Штатах те, кто встречается с такими трудностями, как правило, находят более легкие пути. Я несколько раз предлагал проводить исследования грибов в Японии, и мне отказывали. Это очень интересная тема, но слишком сложная». Между тем без фундаментальных работ не будет и новых практических применений.

Светящихся животных в природе много. Из десятков видов «сухопутных» обладателей биолюминесцентной люциферин-люциферазной системы самые знаменитые — светляки, но гораздо больше светящихся организмов в морях и океанах. Это бактерии, губки, одноклеточные водоросли динофлагелляты, кишечнополостные — кораллы и медузы, моллюски, иглокожие, морские ракообразные (например, рачки рода ципридина, которых японцы называют «умихотару» — морской светляк; их светящиеся вещества выделил Осаму Шимомура еще до своего отъезда в США), многощетинковые черви... Помните, в «Человеке-амфибии» Александра Беляева: «Ихтиандр смотрит вверх — перед ним свод, сплошь усеянный мелкими, как пыль, звездами. Это ночесветки зажгли свои фонари и поднимаются на поверхность океана. Кое-где во тьме виднеются голубоватые и розоватые светящиеся туманности — плотные скопления мельчайших светящихся животных. Медленно проплывают шары, излучающие мягкий зеленоватый свет. Совсем недалеко от Ихтиандра светится медуза — она похожа на лампу, прикрытую затейливым абажуром с кружевами и длинной бахромой». Ночесветки — это как раз динофлагелляты Noctiluca scintillans, мельчайшие организмы, вызывающие свечение моря.

Люциферин-люциферазная система есть и у менее экзотических животных. Это земляные малощетинковые черви, представители того же класса, что и хорошо знакомый аквариумистам трубочник или дождевой червяк. 

Один из участников мегагранта, Валентин Петушков, впервые увидел их еще студентом на биостанции Красноярского университета. Ночью в сырой земле рядом с палатками, в которых жили студенты, ярко светились какие-то точки. Источниками свечения оказались невзрачные беленькие червячки длиной один-два сантиметра. Гораздо позже, уже работая в лаборатории фотобиологии ИБФ СО РАН, Валентин вспомнил этот случай. Поиск по научной литературе ничего не прояснил, обнаружились лишь некоторые сведения о свечении крупных тропических червей. В конце 80-х В.Н.Петушков и Н.С.Родионова поехали на биостанцию, собрали там образцы почвы и нашли в них тех самых загадочных светящихся червей. Красноярские специалисты по систематике не смогли назвать их вид: в определителях этого червя не оказалось. Первое краткое описание было сделано при участии московского специалиста по беспозвоночным Н.Т.Залесской. Новый вид отнесли к уже известному роду Fridericia и дали ему красивое название heliota (от греческого helios — Солнце и otos — ухо; на уши похожи выросты их семяприемников). В ответ на механические, химические и электрические раздражители Fridericia heliota излучает голубоватый свет; свечение длится примерно десять минут, постепенно затухая. Светящиеся точки расположены на поверхности тела червя, целомическая жидкость, заполняющая тело изнутри, не светится (рис. 1 в начале статьи). 

К тому времени были известны двенадцать видов тропических червей (из шести родов), светящихся в результате однотипной люциферин-люциферазной реакции. Хорошо была изучена мегасколецида Diplocardia longa — крупный (до 60 см!) червь, обитающий в песчаных почвах юга Джорджии (США). Люциферин D. longa — алифатический альдегид N-изовалерил-З-амино-1-пропаналь. Если добавить его к целомической жидкости других светящихся червей, начнется люминесценция — это значит, что их люциферазы способны окислять люциферин диплокардии. Однако в случае сибирских фридериций такая реакция не идет, следовательно, их биолюминесцентная система имеет иную природу.

В 2000-е годы Петушков и Родионова занялись этой темой вплотную. Проблема, с которой всегда сталкиваются специалисты по биолюминесценции, — получение достаточного количества биомассы для выделения и исследования веществ, участвующих в реакции. Характерно в этом смысле описание сбора материала на биостанции Фрайди Харбор, которое дал Шимомура в своей нобелевской лекции: «Мы начинали собирать медуз в шесть утра, а в восемь часть нашей группы принималась отрезать кольца (краевые участки зонтика медузы, наиболее ярко светящиеся. — Е.К.). Всю вторую половину дня мы проводили, экстрагируя экворин из колец. Потом мы снова собирали медуз с семи до девяти вечера, на завтра. Наша лаборатория выглядела как фабрика по переработке медуз, и пахло в ней медузами». В общем, первый шаг на пути к Нобелевской премии нельзя было назвать легким.

Непросто начиналось и исследование люциферина Fridericia heliota. Несколько лет подряд Петушков и Родионова ночами собирали червей в лесах, отмечали места их обитания, днем срезали почвенный покров, в мешках возили в институт и помещали в культиваторы, чтобы была возможность работать с червями и зимой. (Размножаться в лабораторных условиях сиятельные фридериции так и не захотели.) Позже из нескольких тонн почвы вручную выбирали червей (как мы помним, крошечных, не чета полуметровым американским). Ученые выделили люциферин и люциферазу, определили, что для их активности необходимы кислород, АТФ и ионы магния. Разработали методы очистки компонентов, получили УФ-спектр люциферина, исследовали влияние на реакцию in vitro рН и температуры, солей и детергентов.

Новые возможности для развития темы предоставил мегагрант. Создание специальной лаборатории, ориентированной на фундаментальные исследования биолюминесценции, позволило подступиться к установлению структуры нового люциферина. За три года удалось получить всего 90 г очищенной биомассы (а это более 50 000 червей!), выход люциферина составил 5 мкг. Для сравнения: в 1957 году Уильям Мак-Элрой (Университет Джонса Хопкинса, США) со студентами собрал большущую кучу светляков, из которых потом выделил 9 мг люциферина для определения его структуры. Люциферина фридериции оказалось почти в 2000 раз меньше — задача нетривиальная. Однако в экстракте червя, кроме люциферина, были обнаружены другие соединения с похожими спектральными и хроматографическими свойствами. Логично было предположить, что это или субстраты, из которых синтезируется люциферин, или продукты его деградации. В частности, довольно высоким было содержание вещества, получившего обозначение CompX, — около 150 мкг, в 30 раз больше люциферина. Максим Дубинный и Кирилл Надеждин в ИБХ провели ЯМР-спектроскопию и масс-спектроскопию этого вещества и предложили два варианта его структуры (рис. 2). Вероятно, это производное природной аминокислоты тирозина. Чтобы проверить, содержится ли в черве Z- или E-изомер, пришлось синтезировать оба и сравнить их спектральные характеристики. Идентичным природному образцу оказался Z-изомер, он обладал и флуоресценцией, в отличие от другого.


s20140902 ogonki2.jpg

2. CompX — фрагмент люциферина Fridericia heliota; справа его неприродный изомер.


Конечно, спектры снимали и для самого люциферина, хотя возможности исследования были жестко ограничены малым количеством вещества. На этом этапе произошла страшная история, которую мне рассказал Максим Дубинный. Когда настало время растворить пять микрограммов люциферина и отнести на ЯМР для самого главного анализа, к нему подошел коллега с вопросом: «А это что?», схватил пустую на вид пробирку... и уронил. Стеклянная пробирка с результатом трех лет кропотливой работы упала на кафельный пол, подпрыгнула, но не разбилась. Вот так у ученых и появляются седые волосы.

Результаты ЯМР-спектроскопии показали, что в состав люциферина червя, помимо Z-изомера CompX, входят остатки лизина и гамма-аминомасляной кислоты (ГАМК). Кроме того, стала известна брутто-формула люциферина: C23H29N3O11. Если вычесть из нее брутто-формулы лизина, ГАМК и CompX (с учетом двух молекул Н2О, которые должны были освободиться при образовании связей между фрагментами), — C23H29N3O11 - (C6H14N2O2 + C4H9NO2 + C11H10O6 - 2H2O), то получим С2О3 — остаток щавелевой кислоты. Из-за небольшого количества люциферина удалось получить только часть спектров, необходимых для установления его структурной формулы, поэтому щавелевая кислота осталась «невидимой». Но главное — не было понятно, в каком порядке эти четыре остатка связаны между собой.

Если названные фрагменты соединены пептидными связями (карбоксильная группа одного фрагмента связана с аминной группой другого), с учетом того факта, что у CompX и оксалата нет аминогрупп, а у лизина их две, — получается десять вариантов. Теоретически можно было бы получить искусственно все возможные комбинации, однако на это уйдет слишком много времени. К счастью, методы ЯМР-спектроскопии позволяют узнать, какие именно карбоксильные группы в молекуле свободны, а какие участвуют в образовании пептидной связи. Для этого Максим Дубинный снял всего десять ЯМР-спектров при разных значениях рН (дело в том, что переход СООН-группы в СОО- в нейтральной или щелочной среде влияет на соседние группы, и эти изменения можно наблюдать). Оказалось, что карбоксилы ГАМК и лизина свободны, тогда как оба карбоксила CompX участвуют в образовании связей. Таким образом, вариантов осталось всего четыре (рис. 3).



s20140902 ogonki3.jpg

s20140902 ogonki4.jpg

3. Структуры четырех пептидных изомеров люциферина. Только соединение 1 испускало свет при смешении с люциферазой F. heliota.


Четыре кандидата на роль люциферина были получены в ИБХ группой синтеза природных соединений под руководством Ильи Ямпольского. «Соединение 1 оказалось идентичным по всем спектральным характеристикам природному люциферину, и, что самое важное, оно вступило в реакцию биолюминесценции с люциферазой червя с испусканием света. "Момент истины" настал 14 октября 2013 года: в этот день были получены спектры ЯМР, идентичные спектрам природного люциферина, а спустя два часа зарегистрирован сигнал синтетического люциферина на люминометре в присутствии АТФ и белкового экстракта червя» (из пресс-релиза авторов работы на сайте ИБХ РАН). Уже не было никаких сомнений, что структура нового люциферина установлена. Этот результат был опубликован в «Angewandte Chemie», одном из самых престижных химических журналов.

Теперь стоит задать вопрос: что дальше? Мегагрант завершен. В ходе исследования образовался уникальный коллектив ученых, способный решать задачи, на первый взгляд кажущиеся неразрешимыми. Осаму Шимомура так отозвался об успехе российских коллег: «Теперь, я уверен, в области химии биолюминесценции исследователи вашей группы имеют самые высокие в мире стандарты и возможности. Ваша группа будет лидировать в области биолюминесценции, и я надеюсь, что вы получите адекватную финансовую поддержку, чтобы внести свой вклад в мировую науку». Полученные результаты весьма впечатляют. Люциферин Fridericia heliota сравнительно несложного строения, более стойкий, чем люциферин светлячка, не токсичный, в отличие от бактериального люциферина. Все это сулит хорошие перспективы его практического использования. Но, к сожалению, авторам пока не удалось очистить до индивидуального состояния и получить искусственно второй важный компонент новой биолюминесцентной системы — люциферазу Fridericia heliota, без которой «включить» люциферин невозможно, нельзя и независимо подтвердить результаты в другой лаборатории, а также применить их на практике. А значит, научный поиск будет продолжаться.


Литература

Valentin N. Petushkov, Maxim A. Dubinnyi, Aleksandra S. Tsarkova, Natalja S. Rodionova, Mikhail S. Baranov, Vadim S. Kublitski, Osamu Shimomura, and Ilia V. Yampolsky. A Novel Type of Luciferin from the Siberian Luminous Earthworm Fridericia heliota: Structure Elucidation by Spectral Studies and Total Synthesis. «Angewandte Chemie International Edilion», 2014, 53, 22, 5566—5568, doi: 10.1002/ange.201400529


Кому и зачем нужна люминесценция (интервью с авторами работы)


Разные разности
04.02.2023
Электрические пчелы
Ученые из Бристольского университета задались вопросом — могут ли крошечные заряды электричеств...
28.01.2023
Милосердный пожар
Команда исследователей из Университета Миссури изучила, как почва после лесного пожара, насыщенная д...
10.01.2023
Лед озадачивает
Почему горячая вода замерзает быстрее холодной? Как выяснили химики, секрет кроетс...
09.01.2023
Пишут, что...
…волнистая рябь на поверхности сосулек связана с наличием примесей в воде, из которой сосулька о...